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Obviously, the car is moving to the right!

From the camera’s perspective, 
in what direction is the 

car moving?

The car is moving to the left.

I would imagine that  
in 4D, the scene looks like ...

<Img1><Img2>... From the 2D
         features across time....  

Human VLM

Obviously, the car is moving to the right! The car is moving to the left.

Figure 1. Spatiotemporal (4D) Awareness. Humans intuitively reason in 4D (3D space + time), effortlessly reconstructing the dynamic
spatial trajectory of moving objects from any perspective. In contrast, current Vision Language Models (VLMs) typically rely on ag-
gregating 2D visual features across time, leading to incorrect predictions when motion understanding and interpretation requires deeper
spatiotemporal reasoning. In this example, humans correctly perceive the car moving to the right, while the VLM (GPT-4o) inaccurately
predicts leftward movement, suggesting VLMs struggle to perform spatiotemporal reasoning.

Abstract

Vision-language models (VLMs) have shown remarkable
capabilities in integrating linguistic and visual reasoning
but remain fundamentally limited in understanding dynamic
spatiotemporal interactions. Humans effortlessly track and
reason about object movements, rotations, and perspective
shifts—abilities essential for robust dynamic real-world un-
derstanding yet notably lacking in current VLMs. In this pa-
per, we introduce VLM4D, the first benchmark specifically
designed to evaluate the spatiotemporal reasoning capa-

*Equal contribution.

bilities of VLMs. Our benchmark comprises diverse real-
world and synthetic videos accompanied by carefully cu-
rated question-answer pairs emphasizing translational and
rotational motions, perspective awareness, and motion con-
tinuity. Through comprehensive evaluations of state-of-the-
art open and closed-source VLMs, we identify significant
performance gaps compared to human baselines, highlight-
ing fundamental deficiencies in existing models. Extensive
analysis reveals that VLMs struggle particularly with in-
tegrating multiple visual cues and maintaining temporal
coherence. We further explore promising directions, such
as leveraging 4D feature field reconstruction and targeted
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spatiotemporal supervised fine-tuning, demonstrating their
effectiveness in enhancing spatiotemporal comprehension.
Our work aims to encourage deeper exploration into im-
proving VLMs’ spatial and temporal grounding, paving the
way towards more capable and reliable visual intelligence
for dynamic environments.

1. Introduction
Humans posses an innate ability to perceive, track and inter-
pret motion, spatial and temporal changes, [14, 48] enable
rich interpretations of complex dynamic events from both
egocentric and allocentric perspectives [6]. When observ-
ing an object move, we can inherently process any changes
such as lateral shifts, rotational directions and periodic or
repeated actions unfolding along a specific trajectory [6].
These sophisticated perceptual abilities are a product of our
spatiotemporal cognition [18], and form an essential foun-
dation that allows us to comprehend and reason about phys-
ical phenomena, object interactions and causal relationships
within our environment. [27, 33]

Vision-language models (VLMs), which can also poten-
tially perceive the motions and spatialtemporal changes in
videos, constitute a prominent class of methods designed
to emulate or surpass human capabilities in integrated vi-
sual and linguistic reasoning [16, 32]. While prior work has
focused on static visual understanding from mass training
corpuses of language and visual data [56] or understanding
video such as captioning [46] and scene understanding [7],
we find that the exceptional performance in the prior men-
tioned tasks does not innately carry over to spatiotemporal
capabilities. This limitation is notable given that contempo-
rary state-of-the-art VLMs are typically trained on datasets
comprising of billions of annotated video-text pairs [42]. In
contrast, human infants naturally develop robust spatiotem-
poral cognition within the first few months of life [57]. An-
other key challenge that inhibits VLM performance in spa-
tiotemporal tasks is the necessity to implicitly or explic-
itly reconstruct a four-dimensional (4D) representation of
dynamic scenes and subsequently reason over such recon-
struction [64]. As illustrated in Fig. 1, the car is advancing
forwards and turning to the left in its own frame of refer-
ence. However, from the camera’s perspective, its motion
appears as a combination of heading to the right and reced-
ing into the distance despite the car being in the center of the
frame due to camera view rotation. Human observers can
seamlessly disentangle these complex dynamics, accurately
interpreting trajectories by synthesizing diverse visual cues
including camera rotation compensation, stationary scene
landmarks, prior knowledge of 3D and 4D environmen-
tal structures, and perspective projections [6, 18, 33, 48].
The inability of current VLMs to similarly integrate these
cues underscores an important gap. Furthermore, bridging

30% Exo-Centric (Davis, YTS)

30% Ego-Centric (Ego4D)

40% Synthetic Data

49% Translational

18% Rotational

18% Counting

15% False Positives

VLM4D

Figure 2. Distribution of Dataset Sources and Annota-
tions. Breakdown of our dataset illustrating the proportions of
data sourced from third-person (Davis, YouTube), first-person
(Ego4D), and synthetic data, categorized by annotation types:
translational, rotational, action, counting, and false positives.

this gap will require VLMs to develop more sophisticated
mechanisms for reconstructing and reasoning over dynamic
scenes, potentially drawing on insights from cognitive sci-
ence and neuroscience on how humans process and inte-
grate spatial and temporal information.

With the mentioned limitations of exisiting VLMs, to ef-
fectively characterize and challenge the existing spatiotem-
poral reasoning abilities of VLMs, we directly evaluate their
capacity to track complex directional movements and per-
spective transformations over time. We introduce VLM4D,
a rigorous benchmark specifically designed to probe the
spatiotemporal grounding capabilities of current vision-
language models. Through this contribution, we aim to cat-
alyze research that addresses the critical gap in spatiotem-
poral understanding and reasoning within VLMs and pro-
vide a foundational analysis highlighting key deficiencies
in existing models.

We summarize our main contributions as follows:
1. We propose the first benchmark VLM4D explicitly de-

signed to rigorously evaluate the spatiotemporal reason-
ing capabilities of Vision-Language Models (VLMs).

2. We introduce a novel, meticulously curated dataset con-
sisting of diverse real-world and synthetic video se-
quences paired with carefully crafted spatiotemporal
question-answer (QA) annotations.

3. We conduct an analysis to identify critical limitations
in the spatiotemporal reasoning performance of contem-
porary VLMs, highlighting fundamental challenges and
charting clear directions for impactful future research.

2. Related Work
Spatiotemporal Understanding in Vision Language
Models Vision Language Models (VLMs) have evolved
rapidly by fully leveraging the significant achievements of
Large Language Models (LLMs) [4, 5, 15, 55, 60, 67]
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Figure 3. Dataset Generation and Annotation Pipeline. Our dataset was constructed by collecting real videos and generating synthetic
data, followed by human-in-the-loop quality reviews to address ambiguous videos and annotations. After temporal alignment and quality
assurance, human-annotated questions and answers were created, complemented by multiple-choice questions generated by large language
models (LLMs). The final dataset includes real-world and synthetic video data with comprehensive VLM scoring metrics.

and large-scale visual instruction tuning datasets [13, 41,
83]. While VLMs [1, 21, 26, 35, 41, 59, 63, 83] exhibit
transformative potential for applications such as embod-
ied AI [17, 29, 58], robotics [52, 61], and world model-
ing [43, 77], most existing methods remain constrained to
static images, focusing narrowly on spatial understanding
while overlooking the dynamic temporal dimension inher-
ent in real-world interactions. To bridge this gap, emerg-
ing research [11, 37, 47, 75, 76] has begun exploring video
modality integration, aiming to equip VLMs with spatial-
temporal awareness critical for tasks like video comprehen-
sion, where both contextual details and motion dynamics
are essential. For example, VideoLLM-MoD [69] proposes
to address the efficiency issue when processing long-term
video by mixture-of-depths. [73] introduces VideoRefer to
enhance the finer-level (like object-level) spatial-temporal
video understanding of VLMs. Grounded-VideoLLM [62]
also targets for fine-grained video understanding through in-
corporating an additional temporal stream. In this work, we
aim to rigorously evaluate the 4D spatial-temporal reason-
ing capabilities of state-of-the-art VLMs, probing how and
to what extent these models internalize spatial intelligence
and temporal dependencies.

VLM Benchmarks Following the development trends of
VLMs, benchmarking VLMs shares the similar trajectory
by first evaluating vision QA on static images [24, 34, 44,
74], to align with models’ early focus on 2D understanding.
As VLMs evolved to tackle dynamic scenarios, benchmarks
expanded to evaluate general-purpose video comprehension
tasks that probe temporal coherence and event understand-
ing [19, 28, 39, 40, 49]. Notably, MMVU [80] further
proposes a knowledge-intensive benchmark to assess the
expert-level reasoning ability of current video-based large
models. However, while these works assess perception and
semantic understanding, they largely overlook the explicit
evaluation of spatial-temporal awareness, a core capabil-
ity for real-world applications requiring 4D (3D space +
time) reasoning. Recent efforts like [72] pioneer bench-
marks for 3D visual-spatial intelligence but restrict evalu-
ation to static 3D scene, neglecting the interplay of object

motion and temporal dynamics intrinsic to videos. In this
work, we introduce VLM4D, the first benchmark designed
to holistically evaluate the 4D intelligence in VLMs, unify-
ing spatial understanding, temporal continuity, and motion
reasoning. By curating tasks that demand precise analysis
of dynamic interactions (e.g., direction prediction, perspec-
tive anticipation, and motion reasoning), VLM4D exposes
critical gaps in current models’ ability to internalize spa-
tiotemporal relationships. Our work not only advances the
granularity of VLM evaluation but also shares insights and
potential solutions to improve the model performance.

3. The VLM4D Benchmark
We introduce VLM4D, the first benchmark specifically de-
signed to test the spatiotemporal reasoning abilities of
VLMs. VLM4D consists of 1,000 videos paired with over
2,000 question-answer pairs, each carefully designed to as-
sess both spatial and temporal understanding jointly. The
majority of these videos are sourced from datasets with rich
spatiotemporal characteristics, thus ensuring a diverse range
of motion-related scenarios. We augment the dataset with
synthetic videos generated by a world-foundation model,
Cosmos [2], that has been modified using techniques intro-
duced in [25] to obtain more accurate correspondence be-
tween motion-oriented prompts and the resulting generated
video. Figure 2 illustrates the composition of our dataset.

3.1. Benchmark Construction
Unlike prior work that often relies heavily on LLMs
and VLMs to generate first iterations of benchmarks and
datasets [9] followed by human quality control - we found
that existing VLMs and automated methods showed signif-
icant limitations in terms of realiability and quality. This
shortcoming necessitated direct human annotations that
were then followed by augmentation by LLMs to ensure
a high-quality benchmark. An overview of the benchmark
curation pipeline is shown in Fig. 3.

Real Video Data Collection Real-world videos were
sourced from datasets with rich spatiotemporal character-
istics that ensured diverse motion and perspective varia-
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In which direction of rotation does the person pour the batter into the frying pan?
A. Counter-clockwise C. Right to leftB. Left to right D. Clockwise

What direction is the robotic dog moving towards?
C. Not movingB. no robotic dog thereA. Right

Is the camel in the foreground turning to the left or right from its own perspective?
A. Not moving D. RightC. Moving straight, not turningB. Left

D. Left

Figure 4. Qualitative Examples of Dataset Annotations. (Top) A third-person video with translational annotations (“camel turning left
from its perspective”). (Middle) A first-person video with a rotational question (“clockwise rotation of ladle”). (Bottom) A synthetic scene
with action recognition “robotic dog moving left”).

tions. For egocentric data, we primarily relied on the Ego4D
dataset [23], while most object-centric data points were col-
lected from the Davis [54] and YouTube-VOS [70] datasets.
To minimize confounders and to focus attention of VLM
abilities to only spatiotemporal reasoning, we preprocessed
the videos by temporally segmenting and centering them
around the most relevant action thus resulting in videos with
an average duration of 5-15 seconds. This ensures that the
key event described in the question is clear and reduces am-
biguities or confounders that would reduce VLM accuracy.

Synthetic Video Generation For synthetic video genera-
tion, we use Cosmos [2] as our video generation backbone.
To ensure that the generated videos align with the intended
object moving directions, we incorporate input bounding
boxes as additional spatial guidance. Specifically, we fol-
low the approach introduced in [25] modifying the diffusion
forward steps to enforce object localization constraints at
each timestep, ensuring consistency between the generated

object direction and the user-specified trajectory. The aver-
age duration of generated synthetic videos is 5 seconds. To
maintain high-quality outputs, we perform a manual verifi-
cation step after generation, filtering out low-quality videos
and retaining only those that accurately match the speci-
fied directions. Once a video is generated, we use an LLM
(GPT-4o) to generate two types of questions for evalua-
tion: Direct questions, which are derived directly from the
textual prompt used to generate the video; Counterfactual
questions, which involve querying about non-existent ob-
jects in the generated scene. Both question types follow the
format: “What direction is the ⟨Object Name⟩ moving?”,
where the model must select one of four possible answers:
“left”, “right”, “not moving”, or “no ⟨Object Name⟩ there.”

QA Generation and Quality Control Question-answer
pairs are primarily constructed through human annotations.
The question answer pairs are then supplemented with al-
ternative answers by an LLM (GPT-4o) for multiple choice
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(MC) questions. To ensure high-quality annotations, a rig-
orous human verification process was applied where am-
biguous videos were filtered out and vague, misleading, or
incorrect QA pairs were refined to allow for spatial and tem-
poral alignment between the language and visual content.
Figure 4 showcases some qualitative examples of annota-
tions for different types of videos.

Assessing Human Performance To establish a human
performance baseline on our benchmark, we conducted an
evaluation in which participants independently answered
100 randomly sampled questions from the dataset. The ac-
curacy of human responses was then aggregated to approx-
imate the performance of human spatiotemporal reasoning
on thedataset.

3.2. Categorizing Spatiotemporal Performance
To systematically evaluate spatiotemporal reasoning ca-
pabilities, we first categorize videos into two primary
groups: egocentric (first-person) videos and exocentric
(third-person) videos. Egocentric videos are sourced from
the Ego-4D [23] dataset where scenes are captured from
a head-mounted camera, thus offering dynamic video data
that is inherently coupled with the individual’s actions.
Exocentric videos encompass a diverse range of recorded
scenes, from sports footage to everyday scenes. Beyond
this categorization, we also evaluate spatiotemporal per-
formance across four dimensions: translational movement
(TM), rotational movement (RM), spatiotemporal count-
ing (STM), and false positives (FP). Translational move-
ment assesses a model’s ability to track linear motion within
scenes, while rotation movement evaluates the understand-
ing of changes in orientation and perspective shifts over
time. Spatiotemporal counting extends these core motion-
based tasks by requiring a more complex reasoning strategy
to determine the number objects performing a translation
or rotational movement. Lastly, the false positives category
measures the model’s reliability in recognizing whether any
motion took place. By structuring the benchmark along
these axes, we aim for a comprehensive framework for as-
sessing spatiotemporal reasoning (Figure 5).

4. Evaluation of VLM4D Benchmark
4.1. Evaluation Setup
Benchmark Models We evaluate over 10 of the most
recently released VLMs thus covering a wide range
of model sizes, architectures, and training methodolo-
gies. For open-source models, we include Llama-3.2-
Vision [22], DeepSeek-VL [45], InternVL2.5 [10], Pix-
tral [3], Aria [36], Idefics [31], H2OVL [20], Qwen2-
VL [63], Qwen2.5-VL [71], VideoLLama2 [11], Vide-
oLLama3 [75], Llava-One-Vision [35], Llava-NeXT-

Video [79], InternVideo2 [65], and InternVideo 2.5 [66].
When available, we evaluate different parameter sizes for
each model type, resulting overall in models ranging from 2
to 72 billion parameters. For closed-source VLMs, we eval-
uate GPT-4o [50], Gemini 2.0 Pro [59], and Grok-2-Vision.

Evaluation Settings The evaluations were performed in a
zero-shot setting with the video or a set of sampled frames
from the video followed by the prompt forming the input.
For each model, we evaluate on two different inference set-
tings. In the first setting, the model is directed to output the
answer immediately without any reasoning (DO) and in the
second evaluation setting, the model is directed to create in-
termediate reasoning steps, Chain of Thought (CoT) [68],
before inferring the final answer. Additional details about
the evaluation setup and prompts are provided in the Ap-
pendix.

Metrics Following prior work [72] and given the nature of
our target task, we use multiple-choice questions for evalua-
tion. The primary metric is accuracy on the multiple choice
questions (MCQ). Given the two inference settings men-
tioned previously, we employ LLM-as-Judge following [80]
to grade the VLMs’ outputs. LLM-as-Judge was utilized in-
stead of performing string or template matching as we found
that especially during CoT, various VLMs may output all
possible answers during the reasoning process in varying
frequencies and with slight modifications to the format of
the possible answer choices in MCQ. Each MCQ contains
four possible answers.

4.2. Benchmark Results
VLMs Performance The evaluation results in Tab. 1
reveal several critical insights regarding the spatiotem-
poral reasoning capabilities of contemporary VLMs on
the VLM4D benchmark. First, proprietary VLMs, partic-
ularly OpenAI’s GPT-4o, consistently outperform open-
source models across nearly all real-world categories, high-
lighting the performance gap between closed-source and
publicly available VLMs. Among open-source models,
InternVideo2.5-8B and Qwen2.5-VL-72B-AWQ emerge as
notable contenders, with Qwen2.5-VL-72B-AWQ achiev-
ing exceptional results on synthetic data, surpassing even
GPT-4o. However, all models significantly trail behind
human-level performance, emphasizing substantial room
for improvement, especially in nuanced spatiotemporal rea-
soning. These findings underscore a critical gap in current
VLM architectures, reinforcing the need for further research
into structured 4D scene representations and improved spa-
tiotemporal grounding strategies. We additionally show in
Fig. 5 for the top-performing models their strengths and
weaknesses in the fine-grained categories mentioned in the
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Organization Model Release Real Synthetic Overall

Ego-centric Exo-centric Average Directional FP Average

User Study Human Performance 99.6 99.7 99.7 91.8 100 95.9 98.3
Random Random Selection 24.4 23.2 23.6 25.5 24.7 25.1 24.2

Latest Proprietary VLMs

OpenAI GPT-4o 2024-11 54.3 61.2 58.9 47.8 43.0 45.4 53.9
Google Gemini 2.0 Pro 2025-2 44.8 50.5 48.7 42.8 41.8 42.3 46.3
xAI Grok-2-Vision 2024-12 44.1 48.8 47.3 49.0 60.5 54.8 50.0

Open-source Image VLMs

Meta Llama-3.2-11B-Vision 2024-9 35.2 36.1 35.8 38.3 55.8 47.0 39.9
Microsoft Phi-3.5-Vision 2024-7 36.3 39.1 38.2 26.5 37.5 32.0 35.9
DeepSeek DeepSeek-VL2-Tiny 2024-12 31.4 32.5 32.2 42.8 25.5 34.1 32.9
Shanghai AI Lab InternVL2.5-38B 2024-11 42.8 53.2 49.7 37.5 55.5 46.5 48.6

InternVL2.5-8B 2024-11 40.8 41.1 41.0 40.8 47.0 43.9 42.1
InternVL2-8B 2024-6 33.2 38.2 36.5 34.8 58.0 46.4 40.2

Mistral AI Pixtral-12B 2024-9 36.3 32.9 34.0 41.0 17.3 29.1 32.2
Rhymes Aria 2024-11 42.3 44.0 43.5 35.3 56.3 45.8 44.3
HuggingFaceM4 Idefics3-8B 2024-8 34.3 36.2 35.6 33.5 47.3 40.4 37.4
H2O H2OVL-Mississippi-2B 2024-10 37.0 33.3 34.5 27.3 41.0 34.1 34.4

Open-source Video VLMs

Alibaba Qwen2.5-VL-7B 2025-1 42.3 45.0 44.1 39.3 48.5 43.9 44.0
Qwen2.5-VL-72B-AWQ 2025-1 49.9 48.7 49.1 54.3 72.8 63.5 54.4
Qwen2-VL-7B 2024-8 36.1 38.2 37.5 38.5 40.3 39.4 38.2
Qwen2-VL-72B-AWQ 2024-9 43.0 46.2 45.2 43.8 71.0 57.4 49.7

DAMO VideoLLama3-2B 2025-1 48.6 43.7 45.3 29.0 69.8 49.4 46.8
VideoLLama3-7B 2025-1 47.4 45.0 45.8 39.5 58.8 49.1 47.0
VideoLLama2.1-7B 2024-10 43.0 36.0 38.2 31.5 40.0 35.8 37.3
VideoLLama2-7B 2024-6 36.3 16.5 23.0 25.8 45.5 35.6 27.6

OpenGVLab InternVideo2.5-8B 2025-1 52.8 50.1 51.0 45.3 30.0 37.6 46.1
InternVideo2-8B 2024-8 37.2 37.9 37.6 40.5 2.8 21.6 31.7

LLaVA LLaVA-One-Vision-7B 2024-9 32.5 33.1 32.9 32.8 36.0 34.4 33.5
LLaVA-NeXT-Video-7B 2024-6 30.3 30.9 30.7 24.5 27.3 25.9 28.9
LLaVA-NeXT-Video-34B 2024-6 37.2 34.9 35.7 31.5 56.3 43.9 38.7

Table 1. Evaluation on VLM4D Benchmark across various proprietary and open-source VLMs. Top three performers in each category are
highlighted from dark (highest) to light (third highest). Human and random selection baselines are included for reference.

previous section. As expected, translational motion per-
forms best, followed by rotational motion and spatiotem-
poral counting.

Human Level Performance We use Prolific, an online
platform designed to connect academic researchers with
user research participants for human-level performance
evaluation. The participants are English-speaking random
users verified by this platform without prior knowledge of
computer vision. We asked 51 candidates to answer the spa-
tial awareness questions in our benchmark. Each question
has four choices, and the user may select only one correct

answer. We collect their answers and report the average pre-
cision in Table. 1

5. Analysis: Why VLMs Don’t Work Well?

5.1. Limited Spatiotemporal Cognition

Despite significant advances in VLMs, their ability to un-
derstand and reason about motion, spatial relationships, and
temporal coherence remains fundamentally underdeveloped
[8, 51]. Chain of Thought (CoT) [68] is widely employed
as a method to improve accuracy through step-by-step rea-
soning. We showcase a comparison between CoT and DO
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Figure 5. Model Accuracy Across Real Scene Question Categories
of top-performing VLMs.

in Fig. 6. Overall, there is no indication of a large ad-
vantage of CoT over all evaluated models. Upon deeper
exploration of the CoT reasoning of some models, we ob-
serve that the reasoning process was primarily flawed in the
following ways: irrelevant information and arriving at con-
clusions that are inconsistent with the reasoning process.
Larger models exhibited strategies that would be similar to
how a human processes spatiotemporal information, but the
resulting execution falls short of human performance. This
demonstrates a disconnect between its visual and linguistic
knowledge. We provide examples of this behavior in the
supplement.

5.2. Deficiencies in Spatiotemporal Labeling

Another avenue of exploration we undertook is to under-
stand the richness of spatiotemporal labels in popular SFT
VLM datasets. Typically, video captioning occurs at the
’scene’ level, lacking fine-grained temporal, spatial, and
object-level details. We performed an extensive analysis,
encompassing over 2 million samples [9, 12, 30, 38, 78].
We performed this analysis through string-matching of spa-
tiotemporal descriptors related to directionality, transla-
tional motion, rotation, and perspective shifts and provide
the overall results in Fig. 7. We then performed a man-
ual finegrained evaluation of the ShareGPT4Video dataset
[9] which we found had the highest density of spatiotem-
poral datasets. We found that from a sample of 100 labels
that were detected as spatiotemporal, less than 10% of them
were judged as accurate upon human evaluation. This re-
sult underscores the inadequacy of current dense captioning

Figure 6. Comparison of CoT and DO Accuracy Across Mod-
els. Accuracy comparison between Chain-of-Thought (CoT) and
Direct Output (DO) prompting across VLMs.

approaches, which frequently generate spatiotemporal de-
scriptors without capturing precise motion dynamics. We
provide more detailed analysis and explanations in the sup-
plement.

6. Probing Future Solutions
To probe promising future solutions for enhancing spa-
tiotemporal video understanding, we propose two ap-

Figure 7. Heatmap of Occurances of Spatial-Temporal Terms
in popular video SFT datasets.
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proaches that address some of the shortcomings of current
state-of-the-art VLMs: fine-tuning a VLM on data-rich in
spatiotemporal actions and the other leveraging 4D recon-
struction and feature fields jointly with a VLM. SFT refines
the model’s abilities by training on datasets that contain
temporally and spatially rich actions and interactions. By
integrating structured visual representations and targeted
fine-tuning, these approaches enhance video-language mod-
els’ ability to interpret motion. The second method lifts the
feature space of VLMs into a temporally coherent 4D fea-
ture field, providing structured scene representations that
improve motion and spatial reasoning in the stage of de-
coding and inference.

Spatial-Temporal SFT We evaluate on a subset split of
the real dataset by splitting the real-world dataset into a
training and testing split (80% / 20%) and we try settings
using synthetic/real/both for training. We conducted the ex-
periments using Qwen 2VL (7B) and Qwen 2.5VL (7B)
through LLama-Factory [81], and compared the perfor-
mance before and after supervised fine-tuning in Tab. 2. The
results demonstrated an improvement in accuracy in spa-
tiotemporal reasoning, suggesting that performance gains
can be obtained through targeted training. However, the ad-
dition of synthetic data does not necessarily increase perfor-
mance over using real data alone, suggesting the importance
of synthetic data quality.

4D Feature Fields Reconstruction Recent advances in
3D/4D reconstruction methods, such as Feature4X [82],
have significantly enhanced Vision-Language Model
(VLM) performance on visual question answering (VQA)
tasks by integrating structured 4D scene representations
into the model’s inference stage. Inspired by these promis-
ing results, we investigate incorporating spatiotemporal
awareness into the InternVideo2-8B model [65], employing
the 4D feature lifting strategy proposed by Feature4X. To
assess this approach, we evaluate performance on a subset
of the VLM4D benchmark, specifically leveraging all 50
videos from the DAVIS 2016 dataset [53]. Our experimen-
tal evaluation compares the inference results across three
distinct input modalities: original 2D videos, reconstructed
global-view RGB videos (4D), and reconstructed global
semantic feature fields. As demonstrated in Table 3, the
highest accuracy consistently results from the reconstructed
semantic feature fields, highlighting the clear advantages
of structured 4D representations. These findings confirm
that global 4D feature field reconstruction enhances con-
textual understanding and mitigates artifacts associated
with RGB rendering during reconstruction. However,
the current approach requires per-scene optimization as
a post-processing step, limiting its generalizability and
making it computationally intensive.

Model FF MC

Original Model
Qwen 2VL (7B) 31.9 38.3
Qwen 2.5VL (7B) 31.6 43.4

Finetuned Model
Qwen 2VL (7B) (R) 50.7 53.5
Qwen 2VL (7B) (S) 38.9 41.0
Qwen 2VL (7B) (R+S) 49.7 52.8
Qwen 2.5VL (7B) (R) 48.9 56.3
Qwen 2.5VL (7B) (S) 35.4 42.0
Qwen 2.5VL (7B) (R+S) 39.2 48.3

Table 2. SFT on Spatial-Temporal Datasets. MC and FF refer
to multiple-choice and freeform accuracy, respectively. R means
SFT using the real-world dataset, S denotes the synthetic dataset,
R+S represents using both.

Input Modality Accuracy

Chain of Thought Response
Original 2D Video 36.0
Global View Video 32.7
Global Feature Field 37.4

Direct Output Response
Original 2D Video 24.3
Global View Video 23.8
Global Feature Field 29.0

Table 3. InternVideo2 Accuracy with 4D Reconstruction. Com-
parison of InternVideo2 accuracy given different input modalities
from the same dataset.

7. Conclusion
Through the construction of the VLM4D benchmark, we
evaluate the spatiotemporal reasoning capabilities of vari-
ous Vision-Language Models (both open-source and pro-
prietary). While more recently released models demon-
strate improved performance over their counterparts, they
remain significantly behind human proficiency. Overall, our
work questions whether VLMs posses spatiotemporal rea-
soning abilities that are imperative to have for more sophis-
ticated visual agents in fields ranging from robotics to inter-
active AI systems that require a deep understanding of dy-
namic visual environments. We hope to inspire future work
to explore novel approaches for integrating spatiotemporal
grounding, thereby enhancing their spatiotemporal reason-
ing capabilities and facilitating robust deployment.
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